An Nmr Study of the Reactions of Primary Alkylphosphines, Arsines and Stibines with Disulfur Dichloride

P. CHOUDHURY and A. L. RHEINGOLD*

Department of Chemistry, State University of New York, Plattsburgh, N.Y. 12901, U.S.A.

Received March 2, 1978

We have previously observed many similarities between the chemistry of the sulfur atom and the heavier primary organophictogen (RE<) moieties (E = P, As or Sb) [1]. Of particular interest has been the propensity of both moieties under similar chemical conditions to form a broad variety of homoatomic catenate structures. In order to more directly assess the validity of this observation, we have studied a series of competitive catenation reactions involving the formation of $(CH_3E)_x$ and S_x through the treatment of primary alkylhydrides, CH₃EH₂, with S₂Cl₂. Fluck and Reinisch found that C₆H₅PH₂ and S₂Cl₂ combine to form a heteroatomic four-membered ring, (C₆H₅PS₂)₂, and HCl [2]. Reactions of methylamine with S₂Cl₂ over a range of initial reactant molar ratios lead to several heterocyclic products containing the S-Nlinkage [3]. Additional motivation for the present study is provided by the substantial current interest in S-N polymers and efforts directed toward the preparation of isoelectronic analogs [4]. In none of the reactions we now report, however, is any evidence seen for the formation of heteroatomic catenate structures.

This project also represents the first comparative reactivity study of alkylhydrides of the elements, phosphorus, arsenic and antimony (the instability of bismuth hydrides [5] precluded their inclusion).

Experimental

Methylphosphine [6], methylarsine [7] and ethylarsine [7] were prepared by literature methods, and methylstibine was obtained by the LiAlH₄ reduction of methyldichlorostibine in di-n-butylether [8]. All reagents were found spectroscopically pure (IR, MS and PMR).

Solutions of varying molar ratios of the primary alkyl hydrides (REH₂, E = P, As or Sb) and disulfur dichloride, $S_2 Cl_2$ (freshly distilled from sulfur) were combined in benzene (freshly distilled from sodium) as approximately 10% solutions and sealed in mediumwall 5 mm o.d. nmr tubes. The hydrides were added by direct vacuum-line distillation into the tube and all solutions were thoroughly degassed by repetitive freeze-pump-thaw cycles. A small quantity of a chemical shift and integration standard was also added (either TMS or cyclohexane). The rapid formation of considerable quantities of solid polymethylpolyarsine in reactions in which CH₃ AsH₂ was in excess required that the tubes be thawed slowly while undergoing slow (5 rpm), end-over-end rotation to prevent formation of a solid plug. All reactions that did not rapidly reach a static state based upon periodic nmr monitoring were thermostated at 60.0 ± 0.5 °C.

Nmr spectra were recorded on a Perkin-Elmer R20B spectrometer. All chemical shifts are TMS = 0.00δ , and coupling constants are the average of at least three scans at minimum calibrated sweep widths. Reported chemical shifts of mixture components all compare within acceptable limits to benzene solutions of the individual compounds.

Results and Discussion

For all of the hydrides studied, CH_3PH_2 , CH_3AsH_2 , $C_2H_5AsH_2$ and CH_3SbH_2 , extensive transfer of chlorine from sulfur to pnictogen occurs immediately upon thawing the benzene solutions. The golden color imparted to the initial solutions by S_2Cl_2 is also immediately discharged when the molar quantity of S_2Cl_2 is equal to or less than that of the hydride.

CH₃PH₂

At a 2:1 molar ratio of CH₃PH₂ and S₂Cl₂ (1.10 mmol $CH_3PH_2/0.55$ mmol S_2Cl_2) after 24 hr at 60°, 0.75 mmol CH₃PHCl, 0.03 mmol (CH₃P)₅, 0.20 mmol H₂S and 0.27 mmol unreacted CH₃PH₂ were identified by nmr chemical shift and quantitatively determined by spectral integration by comparison to a known quantity of internal standard; these values did not change during the next 18 months. Approximately equal molar quantities of hydridic H and Cl are unaccounted for by mass balance and may be attributed to HCl whose presence is additionally suggested by the small amount of white precipitate which possessed dissociation pressures in accord with methylphosphonium chloride, and by the spectral form of unreacted CH₃PH₂. By rapid exchange of hydridic H on CH₃PH₂ with HCl (eq. 1) the methyl group appears as a slightly broadened (2Hz halfheight linewidth) spin decoupled singlet (0.85δ) .

 $CH_{3}PHH + H'CI \rightleftharpoons CH_{3}PHH' + HCI$ (1)

^{*}To whom correspondence should be addressed.

Essentially similar spectral features are found in our previously reported spectra of CH_3AsH_2 in the presence of hydrogen halides [9, 10]. No signal is seen for either HCl or the phosphorus-bonded protons on CH_3PH_2 due to their extreme broadening. A small sulfur deficit is also shown by mass balance which can be accounted for by the amount of monoclinic S_8 (mp = 119.5 °C) removed by filtration. No CH_3PCl_2 is found.

Methylchlorophosphine (CH₃PHCl) has not been previously reported. The arsenic analog, CH₃AsHCl, while stable in equilibrium with CH₃AsH₂ and CH₃AsCl₂, immediately loses HCl on isolation to form various liquid and solid modifications of homoatomic catenated polymethylpolyarsine [9]. CH₃PHCl behaves similarly except that the only catenate structure found on decomposition is the cyclooligomer, (CH₃P)₅, eq. 2.

$$5CH_3PHCl \longrightarrow (CH_3P)_5 + 5HCl$$
 (2)

Several features of the pmr spectrum of CH₃PHCl are noteworthy. The first order spectrum is characterized by δ CH₃ = 1.48 (doublet of doublets), δ PH = 5.10 (doublet of quartets), ¹J_{PH} = 241.2Hz, ²J_{PCH} = 14.7Hz and ³J_{PCH} = 3.4Hz. Both δ PH [11] and ¹J_{PH} [12] are the largest values for these parameters we are aware of for a three-bonded phosphorus compound. No evidence for a rapid proton-proton exchange analogous to that found for CH₃PH₂ is observed for CH₃PHCl due presumably to the diminished hydridic character of the phosphorus-bonded hydrogen in CH₃PHCl.

 H_2S appears as a singlet whose position is somewhat concentration dependent $(0.3-0.4\delta)$, and $(CH_3P)_5$ as a broad singlet (due to extreme spectral complexity) at 1.12 δ . Seel *et al.* report that $(CH_3P)_5$ (in a mixture with CH_3PF_2 and CH_3PF_4) appears as a broad singlet at about 1.5 δ [13].

The observed events can be summarized in eq. 1-3, occurring in reversed order.

$$2CH_{3}PH_{2} + S_{2}Cl_{2} \longrightarrow 2CH_{3}PHCl + H_{2}S + 1/8S_{8}$$
(3)

At an initial 1:1 ratio of CH₃PH₂ and S₂Cl₂, no CH₃PHCl or (CH₃P)₅ and only a trace of H₂S (after 24 hours) is found. At this time the only major products are CH₃PCl₂ (δ CH₃ = 1.90, ²J_{PCH} = 14.5Hz) and H₂S₂ (δ H = 1.89) [14], *i.e.*, eq. 4:

$$CH_3PH_2 + S_2Cl_2 \longrightarrow CH_3PCl_2 + H_2S_2$$
(4)

During the next 120 days, the quantity of H_2S_2 decreases by about 1/3, and is accompanied by an increase in H_2S and the initiation of the precipitation of S_8 according to the disproportionation shown in eq. 5 [15].

$$8H_2S \longrightarrow 8H_2S_2 + S_8 \tag{5}$$

1

The sole presence of S_8 as a catenated end product can be attributed to the absence of CH₃PHCl which appears to be the necessary precursor (in this system) to the cyclopolyphosphine.

At a 1:2 ratio of CH_3PH_2 and S_2Cl_2 , no H_2S or H_2S_2 is found. Instead, HCl (δ HCl = 0.20), CH_3PCl_2 and S_8 are obtained. In this case the solution retains the golden color of unreacted S_2Cl_2 . Thus hydrogen sulfide (or hydrogen polysulfide) formed on H/Cl exchange of S_2Cl_2 with CH_3PH_2 would be consumed by excess S_2Cl_2 to produce S_8 and HCl, eq. 6 [16].

$$8H_2S + 8S_2Cl_2 \longrightarrow 3S_8 + 16HCl \tag{6}$$

Equation 6, like many of the earlier shown equations are clearly not meant to represent elementary steps; eq. 6 undoubtedly involves the intermediate formation of a wide variety of *catena* and *cyclo* polysulfur species.

There is no evidence for the formation of any compound at any initial molar ratio containing a P-S bond, in contrast to the reaction of $C_6H_5PH_2$ and S_2Cl_2 [2] (see introduction).

The outcome of the CH_3PH_2 reactions bears striking resemblances to the molar ratio dependent reactions of $C_6H_5PH_2$ with phosgene [17].

$$C_6H_5PH_2 + COCl_2 \longrightarrow 1/n(C_6H_5P)_n + CO + 2HCl$$

$$(n = 4, 5 \text{ or } 6)$$

$$C_6H_5PH_2 + 2COCl_2 \longrightarrow C_6H_5PCl_2 + 2CO + 2HCl$$

CH3AsH2

At a 2:1 molar ratio, 0.50 mmol CH_3AsH_2 and 0.25 mmol S_2Cl_2 , CH_3AsCl_2 , H_2S and the purple solid modification of $(CH_3As)_x$ [10] are found. In contrast to the reaction of CH_3PH_2 at the same molar ratio, no unreacted CH_3AsH_2 , CH_3AsHCl or soluble forms of $(CH_3As)_x$, *e.g.*, arsenomethane $(CH_3As)_5$, are in evidence. The products quantitatively satisfy the stoichiometry of eq. 7.

$$2CH_3AsH_2 + S_2Cl_2 \longrightarrow CH_3AsCl_2 + 2H_2S + + 1/x(CH_3As)_x$$
(7)

At the opposite molar ratio $(0.25 \text{ mmol CH}_3\text{AsH}_2, 0.50 \text{ mmol S}_2\text{Cl}_2)$, some $(\text{CH}_3\text{As})_x$ forms initially but disappears quickly if the reaction tube is agitated while it thaws; this disappearance of $(\text{CH}_3\text{As})_x$ under conditions where unreacted $S_2\text{Cl}_2$ remains is explicable by the attack of $S_2\text{Cl}_2$ on the arsenic polymer, eq. 8.

$$1/x(CH_3As)_x + S_2Cl_2 \longrightarrow CH_3AsCl_2 + 1/4S_8$$
 (8)

The overall reaction at this molar ratio can then be represented as

$$CH_3AsH_2 + 2S_2Cl_2 \longrightarrow CH_3AsCl_2 + 2HCl + 1/2 S_8$$
(9)

A quantity of monoclinic S_8 satisfying eq. 9 is retrieved from this reaction.

At molar ratios between 2:1 and 1:2 various mixtures of the products shown in eq. 7 and 9 are observed.

$C_2H_5AsH_2$

A single ratio of $C_2H_5AsH_2$ and S_2Cl_2 of 2:1 (1.0 mmol $C_2H_5AsH_2$, 0.5 mmol S_2Cl_2) was studied. In confirmation of our earlier studies, the substitution of ethyl for methyl precludes the formation of any solid polyarsines for what appear to be steric reasons [1]. The nmr spectrum shows only the presence of $(C_2H_5As)_5$, $C_2H_5AsCl_2$ and H_2S . Although the overlapping and complex nmr signals of $(C_2H_5As)_5$ and $C_2H_5AsCl_2$ precluded obtaining accurate integration data, the approximate areas strongly suggest that the reaction progresses analogously to eq. 7, except that the solid polymeric catenate has been replaced by a cyclopentamer:

$$2C_{2}H_{5}AsH_{2} + S_{2}Cl_{2} \longrightarrow C_{2}H_{5}AsCl_{2} + + 1/5(C_{2}H_{5}As)_{5} + 2H_{2}S$$
(10)

CH₃SbH₂ [18]

At both 2:1 and 1:1 ratios of CH₃SbH₂ and S₂Cl₂ rapid reactions occur producing CH₃SbCl₂, H₂S and a lustrous pale green solid with a metallic sheen which analyzes successfully for $(CH_3Sb)_x$ (required: 2.19%) H, 8.77% C, 89.04% Sb; found: 2.17% H, 8.56% C, 88.94% Sb). This solid is believed to be the first example of the antimony analog of the (CH₃As)_x ladder polymer; a confirmatory X-ray structural characterization awaits the preparation of crystals of adequate size. The solid is, like the arsenic analog [10], insoluble in all tested solvents, indefinitely air stable, and produces a mass spectrum whose highest found peak corresponds to a pentameric composition. Since heating to 230 °C was required to obtain a suitable mass spectrum, the observed pentamer ion suggests only that extensive polymer decomposition occured.

Unlike the reactions with CH_3PH_2 and CH_3AsH_2 , long-term changes in the nmr spectra of the CH_3SbH_2 reactions caused by slow reactions over a period of 500 days at 60 °C are seen. At both initial ratios, slow growth of a singlet at 0.838 is tentatively identified as thiostibosomethane (methylstibine sulfide), CH_3SbS , which Morgan and Davies [19] report to be a moderately benzene soluble yellow solid (m.p. 70 °C) of unknown complexity prepared from CH_3SbCl_2 and H_2S (both reagents are present in our reaction mixtures and decrease in concentration in quantities approximated by eq. 11).

$$CH_3SbCl_2 + H_2S \longrightarrow CH_3SbS + 2HCl$$
 (11)

No evidence, however, is seen for the presence of HCl; this may be explained by an Sb-Sb bond attack by HCl on $(CH_3Sb)_x$, eq. 12 [20].

$$2/x(CH_3Sb)_x + 2HCl \longrightarrow CH_3SbH_2 + CH_3SbCl_2$$
(12)

The CH₃SbH₂ produced in eq. 12 could then combine with several of the abundant mixture components. Despite the rapid thermal decomposition of CH₃SbH₂ (a 5 mmol sample completely degrades to $(CH_3Sb)_x$ and H₂ in vacuo in 30 min at 20 °C), no non-condensible (at -196 °C) gases are produced in these reactions.

After 500 days, all of the lustrous green solid form of $(CH_3Sb)_x$ has given way to a complex black, solid mixture showing lower C and H percentages and variable S percentage (5 – 15%). It is likely a mixture of metallic Sb, Sb₂S₃ and non-crystalline forms of $(CH_3Sb)_x$. A sharp singlet at 1.708, which initially appears after about 30 days, may be dimethylsulfide and would account for the methyl groups lost on Sb-C bond cleavage.

Comments

Alkyl substituted heteroatomic S-E (E = P, As or Sb) bonded catenates (either linear or cyclic) cannot be obtained by combinations of hydrides and chlorides of these elements. Rather, condensation to form homoatomic species is favored: pnictogen-pnictogen bonded forms in pnictogen-rich systems, and S₈ in sulfur-rich systems. Exclusivity is also seen in the arsenic and antimony systems; in neither of these cases did homoatomic catenates of both pnictogen and sulfur persistently coexist.

Acknowledgements

This research project was in part supported by a grant from the Office of Naval Research. The authors are grateful to Dr. William Krueger for his helpful comments on some aspects of the interpretation of the nmr spectra.

References

- A. L. Rheingold in "Homoatomic Rings, Chains and Macromolecules of Main-Group Elements", A. L. Rheingold, ed., Elsevier, Amsterdam (1977) p. 385.
- 2 E. Fluck and R. M. Reinisch, *Chem. Ber.*, 95, 1388 (1962); L. Maier, *Helv. Chim. Acta*, 48, 1190 (1965). In a much earlier study, Dehn [21] has investigated the reaction of S₂Cl₂ with CH₃AsH₂ in aqueous solution

where it would be supposed that S_2Cl_2 would have been destroyed by hydrolysis.

- 3 R. D. Stone and M. L. Nelson, J. Am. Chem. Soc., 81, 3580 (1959); R. C. Brasted and J. S. Pond, Inorg. Chem., 4, 1163 (1965); C. R. Russ and I. B. Douglass in "Sulfur in Organic and Inorganic Chemistry", A. Senning, ed., Dekker, New York (1971) v. 1, p. 239.
- 4 G. B. Street and R. L. Greene, *IBM J. Res. Dev.*, 99 (1977); C. M. Mikulski, P. J. Russo, M. S. Saran, A. G. MacDiarmid, A. F. Garito and A. J. Heeger, *J. Am. Chem. Soc.*, 97, 6358 (1975); E. P. Goodings, *Chem. Soc. Rev.*, 5, 95 (1976); and references contained therein.
- 5 E. Amberger, Chem. Ber., 1447 (1961).
- 6 W. L. Jolly, Inorg. Syn., 11, 124 (1968).
- 7 R. C. Cookson and F. G. Mann, J. Chem. Soc., 67 (1949).
- 8 A. L. Rheingold, P. Choudhury and M. F. El-Shazly, submitted for publication.
- 9 A. L. Rheingold and J. M. Bellama, Chem. Comm., 1058 (1969).
- 10 A. L. Rheingold, J. E. Lewis and J. M. Bellama, Inorg. Chem., 12, 2845 (1973).
- 11 D. Houalla, R. Marty and R. Wolf, Y. Naturforsch., 25b, 451 (1970).

- 12 S. L. Marratt, G. L. Juvinall and D. D. Elleman, J. Am. Chem. Soc., 85, 2664 (1963); G. M. Whitesides, J. L. Beauchamp and J. D. Roberts, J. Am. Chem. Soc., 85, 2666 (1963).
- 13 F. Seel, K. Rudolph and R. Budenz, Z. Anorg. Allg. Chem., 341, 196 (1965).
- 14 C. Brown, in "Sulfur in Organic and Inorganic Chemistry", A. Senning, ed., Dekker, New York (1971) v. 3, p. 275.
- 15 F. Feher and E. Heuer, Z. Anorg. Allg. Chem., 255, 185 (1947).
- 16 F. Feher and W. Laue, Z. Anorg. Allg. Chem., 287, 45 (1956).
- 17 A. Michaelis and F. Ditter, Chem. Ber., 12, 338 (1879).
- 18 A. B. Burg and L. R. Grant, J. Am. Chem. Soc., 81, 1 (1959); N. A. D. Carey, H. A. Meinema, J. G. Noltes, *Inorg. Chem.*, 7, 2643 (1968).
- 19 G. T. Morgan and G. R. Davies, Proc. Roy. Soc., 110A, 523 (1926).
- 20 We have previously shown [9] that anhydrous HCl, at temperatures below 100 °C, is a very poor cleaving agent for As-As bonds, in contrast to the heavier hydrogen halides.
- 21 W. H. Dehn, Amer. J. Chem., 36, 88 (1908).